Extensions 1→N→G→Q→1 with N=C32 and Q=S3xC23

Direct product G=NxQ with N=C32 and Q=S3xC23
dρLabelID
S3xC2xC62144S3xC2xC6^2432,772

Semidirect products G=N:Q with N=C32 and Q=S3xC23
extensionφ:Q→Aut NdρLabelID
C32:(S3xC23) = C22xC32:D6φ: S3xC23/C22D6 ⊆ Aut C3236C3^2:(S3xC2^3)432,545
C32:2(S3xC23) = C23xC32:C6φ: S3xC23/C23S3 ⊆ Aut C3272C3^2:2(S3xC2^3)432,558
C32:3(S3xC23) = C23xHe3:C2φ: S3xC23/C23S3 ⊆ Aut C3272C3^2:3(S3xC2^3)432,561
C32:4(S3xC23) = C2xS33φ: S3xC23/D6C22 ⊆ Aut C32248+C3^2:4(S3xC2^3)432,759
C32:5(S3xC23) = C22xS3xC3:S3φ: S3xC23/C2xC6C22 ⊆ Aut C3272C3^2:5(S3xC2^3)432,768
C32:6(S3xC23) = C22xC32:4D6φ: S3xC23/C2xC6C22 ⊆ Aut C3248C3^2:6(S3xC2^3)432,769
C32:7(S3xC23) = S32xC2xC6φ: S3xC23/C22xS3C2 ⊆ Aut C3248C3^2:7(S3xC2^3)432,767
C32:8(S3xC23) = C3:S3xC22xC6φ: S3xC23/C22xC6C2 ⊆ Aut C32144C3^2:8(S3xC2^3)432,773
C32:9(S3xC23) = C23xC33:C2φ: S3xC23/C22xC6C2 ⊆ Aut C32216C3^2:9(S3xC2^3)432,774

Non-split extensions G=N.Q with N=C32 and Q=S3xC23
extensionφ:Q→Aut NdρLabelID
C32.(S3xC23) = C23xC9:C6φ: S3xC23/C23S3 ⊆ Aut C3272C3^2.(S3xC2^3)432,559
C32.2(S3xC23) = C22xS3xD9φ: S3xC23/C2xC6C22 ⊆ Aut C3272C3^2.2(S3xC2^3)432,544
C32.3(S3xC23) = D9xC22xC6φ: S3xC23/C22xC6C2 ⊆ Aut C32144C3^2.3(S3xC2^3)432,556
C32.4(S3xC23) = C23xC9:S3φ: S3xC23/C22xC6C2 ⊆ Aut C32216C3^2.4(S3xC2^3)432,560

׿
x
:
Z
F
o
wr
Q
<